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Ground-state energies of one- and two-electron silicon dots in an amorphous silicon dioxide matrix

Davorin Babic, Raphael Tsu, and Richard F. Greene
University of North Carolina at Charlotte, Charlotte, North Carolina 28223

(Received 30 October 1991)

The one- and two-electron ground-state energies of a silicon sphere embedded in an amorphous silicon
dioxide matrix are calculated as a function of the sphere size. The electron-electron interaction and po-
larization effects are treated by perturbation; our quantum-mechanical calculation is valid for small
spheres with radii between 10 and 40 A. For large spheres, classical electrostatics is used. A universal
effective capacitance is defined in terms of the difference in the ground-state energies of the (n + I)- and
n-electron cases, which agrees with the usual concept of capacitance in the classical limit.

I. INTRODUCTION gime with electrostatics only.
The ground-state energies of a silicon sphere embedded

As pointed out by Hayashi,' ultrafine particles have in an amorphous silicon dioxide matrix for one and two
properties that suggest many scientific and technological electrons are calculated as a function of the size of the
applications. The discovery of luminescence in electro- sphere. Our results are useful for an understanding of
chemically etched silicon is an important scientific break- transport measurements, such as resonant tunneling, be-
through.2 Recently, quantum confinement of microcrys- cause the voltages required to bring in additional elec-
talline silicon (mc-Si) embedded in an amorphous silicon trons to the silicon sphere are determined by the ground
dioxide (a-SiO2 ) matrix showed rich structure in tunnel- states. Obvio ly, excited states must be included in a
ing measurements attributable to quantum confinement proper treatment for an understanding of the optical
in three-dimensions. 3 Raman scattering from ouantum response.
dots of Ge in a-SiO2 shows the expected downshift from
the position of bulk phonons. 4 Small particles of GaAs II. MODEL
(Ref. 5) and CdS (Ref. 6) reveal quantum confinement in
optical absorption. The effects of charge accumulation in The model is taken as a silicon sphere of radius a, em-
quantum confinement have been under intensive studies bedded in an amorphous silicon dioxide matrix. The
involving quantum dots, 7 as well as quantum-well struc- spherical geometry allows us to make use of the expan-
tures. 8'9 It was pointed out that charge accumulation sion of the Coulomb potential in terms of spherical har-
plays a major role in the energy states of the confined monics, resulting in a separation of the radial and angular
mc-Si. 3 We are all familiar with the striking difference components of the wave functions. This, in turn,
between the atomic spectra of the hydrogen and helium simplifies the evaluation of various integrals by the ortho-
atoms caused by the presence of additional charge. The gonality relationships among the spherical harmonics.
physics is even more complicated when the difference in The actual barrier height of 3.2 eV between Si and a-SiO 2
the static dielectric constant of silicon (12) and that of the is taken to be infinite. This approximation avoids the
a-SiO 2 (4) results in induced polarizations. Specifically, a need to treat the tailing of the wave functions into the a-
single electron interacts with its induced polarization in SiO 2 region for energy calculations, but not for tunneling,
the oxide. With two electrons inside the silicon, electrons of course. The presence of those tails necessitates a re-
and induced polarizations interact, resulting in a compli- placement of the dielectric discontinuity by a smooth
cated picture. The present work represents an attempt at function in order to avoid the singularity of the associat-
understanding the physics involved. Eigenstates of two ed polarization energy." Certainly, the approximation of
electrons in such a system can be analytically tractable, 3.2-eV barrier height by an infinite barrier height should
provided that spherical geometry is adopted, and may be adequate for most lower states. Obviously this ap-
provide insight into the behavior of actual quantum dots. proximation does not apply in the case of
The use of the perturbation theory limits our results GaAs/Al. GaI - , As dots.
essentially to the ground state. Furthermore, the spherical quantum box must contain

The difference in energy of a two-electron system from enough silicon atoms so that the effective-mass approxi-
"a one-electron system may be represented qualitatively by mation and the static values for permittivity are applic-
"a capacitance. Because of the complicated interactions, able. These co;iiitions are nearly satisfied for silicon
this capacitance is not a constant representable only by spheres with radius in excess of 10 A. Because of the
geometrical considerations. In a large quantum dot ap- presence of the longitudinal and transverse masses, the
proaching the classical limit, the use of a constant capaci- one-electron states of an isolated silicon sphere require
tance1 ° should be a good approximation. It will be made the use of a variational approach12 which would have
apparent in this work that it is not possible to calculate been too complicated for us to treat with inclusion of the
the effective capacitance of our system in the quantum re- electron-electron and polarization effects. Therefore, we
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45 GROUND-STATE ENERGIES OF ONE- AND TWO-ELECTRON... 14151

have replaced in this work the longitudinal and trans- and two-electron cases. Even in the one-electron case, an
verse effective masses by an isotropic mass of 0.2 6 m,. electrostatic term arises from the interaction of the elec-
The relative permittivities of Si, el, and a-SiO 2, E2, are tron and bound surface charge density at the spherical
taken to be 12 and 4, respectively, boundary of two dielectrics: an electron induces the

The Hamiltonian of the system is, as usual, the sum of bound surface charge density which generates electrostat-
the kinetic and potential energies. The potential energy ic potential at the electron's position. Energy associated
is electrostatic in nature, but its form is substantially with this term must include a factor of 1/2, since it is a
complicated by the presence of two dielectrics separated self-interaction term. Therefore, this energy of self-
by a spherical boundary. We treat this problem by calcu- polarization becomes
lating electrostatic-potential-energy terms via the Poisson q 2( -_2)(l + I )r 21
equation and then using them in the Schr6dinger equa- 0,(r)= 1 1' 2 (3.4)
tion. 2 41rEoE1[ 2+1(Ef+E 2 )]a21 + '

In a typical resonant-tunneling experiment, the applied
voltage measures the energy difference between the where qdenotes theelectronic charge.In the two-electron case there are four terms: self-
ground states of one- and two-electron systems. Our re- polarization terms for each electron, Coulomb interac-
sults should therefore be useful in understanding trans- tion, and polarization interaction. The polarization in-
port measurements. On the other hand, optical measure-ment inolvetheoccpati• o exctedstaes, hic is teraction arises as follows: one electron induces a bound
ments involve the occupation. of excited states, which is surface charge density which interacts with the second
not treated in this work. As mentioned earlier, the major electron. The Coulomb term has the form
computational difficulties are avoided with the use of an
infinite barrier. As long as the excited states for a partic- q 2
ular sphere size are much below the 3.2-eV Si/a-SiO 2 bar- 4?c(r1,r2 ) e.•olr- r2, (3.5)
rier height, excited states may be treated within our
present model with only minor additional complexity. and from Eqs. (3.1) and (3.3), the polarization term is

q, q2(el-•f2)r11r1PJ(cosyr)

III. ELECTROSTATICS •b(r1,r2)= I 4.re -e 2 21+(c- - (3.6)

Calculation of the electrostatic energy terms follows

the outlines of the work by Bru:s and by B6ttcher on
dielectrics in static electric fields.- We cannot apply the IV. QUANTUM-MECHANICAL CALCULATION
image-potential construct, since we deal neither with pla- The Hamiltonian for the one-electron case consists of
nar boundaries nor with perfectly conducting spheres. the kinetic energy for the infinite barrier potential,
Our chosen approach is to evaluate the electrostatic = 0, r fo r > in f -polarizeriontenergy.Greens fuctio forthe poble atand.[ V(r) =0, r < a; •, r >a] and self-polarization energy.
Green's function for the problem at hand. f An exact analytical treatment of the Schrbdinger equa-

The electrostatic potential far away from the sphere is tion that uses this Hamiltonian is quite difficult; we there-
set to zero, leading to the following expressions for the fore resort to the perturbation theory. We can see that
Green's function inside the sphere: for sufficiently small wells, the kinetic energy dominates,

Gin(r,r')= 4 + Atr'P,(cosy) , (3.1) and the self-polarization energy can be taken into ac-
4ire IIr-r'I count by first-order perturbation.

The spherical Bessel functions are the solutions of the
and outside the sphere zeroth-order Hamiltonian that includes the kinetic ener-

Go t(r,r')= Bir -"(+ Pt (cosy) , (3.2) gy and infinite barrier potential terms. Dealing with the
ground state, we are only interested in the lowest eigen-
function14

in which r and r' are the position vectors of the field
point and the charge point, respectively, and y is the an- 0bo(r)=Nj0 (1rr/a)Yoo(f1) , (4.1)
gle between these vectors, measured from an origin at the where N a -'21- and I' =0.050 6606.
center of the dot. 0 0

The coefficients A, and B, are determined by the elec- The self-polarization energy term defined by

trostatic boundary conditions at the Si/a-SiO 2 interface. Es = (b0(r Cr)bo(r))
With the use of an infinite barrier height, the wave func- 2fjo(•r/a )
tions do not have a tail extending outside of the silicon N 0 00
sphere, so that the coefficients B, are not needed in the q 2(El--E2)(l + l)r 21  1
evaluation of matrix elements. Consequently, we only ex- x 8 r drd(I
plicitly exhibit the coefficients A, given by 81re0e5tE2 +i(e,+e2 )Ia21  r

A(r')= (e -E2)(1 + 1 )r'l 
(4.2a)

4Ar) 0 ee• [ 2 +I(EI+E 2 )]a21 +. contains a dimensionless series,

The form of the electrostatic Green's funct:'-n allows 1+1 1 X 0lj2( nx)X2 dx (4.2b)
identification of the potential energy terms in both one- f, ±(E,+E2) 0
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which is summed numerically and is equal to 0.015 16. -q2 0(r I

The final form of the self-polarization energy for the E, r 0o(r4)0o(r 2 ) 41re~ejjr-r2r 0o(r r 2) , (4.6)

ground state is Lhus
q2(fl d which is reducible to the following:

E 8- -'2 0.299 (4.3) o2 1 fofj 2,V,, )j_2 4r 22)
8rola E 4, 0 1a 0o

Note that the self-polarization energy scales as the in-
verse of the radius and is proportional to the difference of X -x x2 2dX
the dielectric constants of the two media. 

x (

The total ground-state energy of our model system is The dimensionless double integral is calculated numeri-
represented by the following expression: cally and its value is 0.004 585 45. The polarization ma-

E1 = 144.6/a 2+ 1.44/a ,(4.4) trix element
q [• 2(et--f2)(l+l)r'1r'Pj(cos.Y)

where the energy is given in eV and the radius a in Ep or"(r)."r2) 1 (- 2)2Pc 1angstroms. II 41rOc0IEI[2 + IE 1[ ( + E 2 ) ]a21 '
Table I shows ground-state energies for several sphere (

radii. Subscripts 1 and 2 of energy E denote number of Xb 0°(r1 )'k(r 2 )) (4.8)
ele-tr=: in the system. The meaning of the superscripts is substantially simplified after the application of the
is the following: k for kinetic energy, s for self- orthogonality relations for the spherical harmonics, be-
polarization, C and p for Coulomb and polarization in- cause all terms except I =0 vanish. The final value of the
teractions, respectively, of two electrons, and no super- polarization energy is
script for total ground-state energy. The two-electron en- - E2)
tries into the table will be described and evaluated im- E q2. (4.9)
mediately. The last row of the table, marked A, shows E-41re0,,a
the difference in the ground-state energies between two-
and one-electron systems. We stress that self-polarization energy contains contribu-

The two-electron Hamiltonian includes one-electron tions from all Legendre polynomials, while both
terms as before and the Coulomb and polarization terms Coulomb and polarization energies contain only the I = 0

of the two-electron interaction term.
The two-electron ground-state energy can be written as

12m (V2+ V2)+ V(ri)+ V(r 2)+4i 1 (ri) E 2 =289.3/a 2 +7.42/a (4.10)

+0,(r2)+0c(rj,r 2)+0p(r 1,r 2) . (4.5) The kinetic-energy term becomes equal to the other com-
ponents of the total energy at the radius of 39 A, there-

Once again, we choose to treat the kinetic energy for the fore we do not list E 2 in Table I beyond 40 A. For a
infinite barrier as the zeroth order. The other terms are larger radius, a self-consistent calculation cannot be
treated by first-order perturbation theory. The lowest- avoided. The two-electron ground-state energy and its
order spherical Bessel function is taken as the spatial various components are included in Table I together with
wave function for each electron in the ground state. An- one-electron energy. The difference between two-electron
tisymmetrization is achieved through spin components. and one-electron ground-state energies is also shown.

The one-electron terms of the two-electron ground-
state energy are the same as in the one-electron case dis- V. CLASSICAL CALCULATION
cussed earlier. We need to evaluate only Coulomb and
polarization matrix elements. Evaluation of the Coulomb The behavior of the system for a very large spherical
matrix element proceeds in a manner similar to the per- well approaches its classical limit. The length scale is set
turbation treatment of the helium ground state.14,i5 Its up by an electron coherence length that is taken to be 100
form is A. For spherical wells with radii of 100 A and larger, the

TABLE I. Calculated one- and two-electron ground-state energies from quantum mechanics.

a (A) 10 20 30 40 60 80

E k (eV) 1.446 0.362 0.161 0.091 0.040 0.023
E' (eV) 0.144 0.072 0.048 0.036 0.024 0.016
E: (eV) 1.59 0.434 0.209 0.121 0.064 0.039
El (eV) 2.893 0.723 0.321 0.182
E' (eV) 0.288 0.144 0.096 0.072
EC (eV) 0.214 0.107 0.071 0.054
Ef (eV) 0.24 0.12 0.08 0.06
E 2 (eV) 3.635 1.094 0.568 0.368
A (eV) 2.05 0.66 0.36 0.25
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electron kinetic energy is estimated via the uncertainty
principle. The estimate is of the order of I meV, which is
negligible compared with the electrostatic contribution.
Evaluation of the electrostatic energy requires that one
specifies electronic positions. A single electron in the sys- 3- -10
tern has its polarization energy minimum at the center of
the well. The easiest way to calculate the energy in this
case is via energy density. The expression that needs to \\ - E,

be evaluated is

2-
Dd'S, .EI

2
If Ekl ].22A

f- %l-2fa4rq2 dr (5.1) (
2 CIC2 a 161r2for4

leading to the following: E2(CLASSICAL)

=1r4•eoa (5.2) .E( F12)

In order to find the positions of the two electrons, the o 40 80 120

classical ground-state energy in the two-electron case is RADIUS (A)

determined by the minimum of the competing repulsive
components. Coulomb and polarization interactions FIG. 1. Ground-state energy of one- and two-electron sys-
push the electrons apart, towards the well's boundary, tems with respect to the spherical-well radius. The dashed por-
while the self-polarization terms push the electrons away tion of E2 represents an extrapolation to agree with the classical
from the boundary, closer to each other. The electrons calculation for large a.
are located at the same distance from the spherical-well's
center opposite to each other. The distance from the
center, denoted by b, is obtained by minimization of the
total electrostatic energy between the electrostatic energy computed classically and

q 2 (el - E2)b 21(i + I)( - 1H) quantum mechanically. The electrostatic energy comput-

Ec + +ed classically is a mathematically well-defined quantity2 41mocE b a 21+ I[2--( 1f2) for radii less than 100 A, although it loses physical mean-

(EI - 2)b21(1+ 1) ing in this range. We plot the ground-state energy of
+ . (5.3) one- and two-electron systems with respect to the

a2 +
1~'E2+1(E 1+E2J spherical-well radius in Fig. 1. Since we restrict a to 39

The above expression can be written as a function of the A or less, E 2 for a greater than 30 A is obtained by a

ratio between an electron's distance from the center and smooth-curve fit through E2 at 39 and 120 A obtained

the well's radius, x = b/a : classically.

2 U2 1(l+ 1)[1+( 1)] VI. DISCUSSION AND CONCLUSIONSEC= 2 --+ (E]l E-2) X 2._(l+2
417'eoEja I2x 'E2 +(e ± 2 ) In this work an attempt to model three-dimensional

(5.4) quantum confinement in Si nanometer-sized crystals sur-
rounded by an a-Si0 2 matrix is presented. We are in-

The minimum with respect to x is found numerically. Its terested in the applied voltage required for tunneling of
value is 5.0284 at x =0. 594. initially one and then two electrons through the quantum

Table II shows values of the one- and two-electron well. A single electron tunnels when the applied voltage
ground-state energies and their difference computed clas- aligns the Fermi level of the outside (degenerate) electron
sically for several radii of the spherical well. The mean- reservoir with the one-electron ground-state energy of the
ing of the symbols is the same as in Table I. We include well. Additional voltage is necessary to have two elec-
the radii smaller than 100 1 to emphasize the difference trons tunnel through the well. This voltage is equal to

TABLE II. Classically calculated one- and two-electron electrostatic energies.

a (A) 10 20 30 40 60 80 100 120

Ec (eV) 0.12 0.06 0.04 0.03 0.02 0.015 0.012 0.01
2 (eV) 0.60 0.30 0.20 0.15 0.10 0.075 0.06 0.05

A (eV) 0.48 0.24 0.16 0.12 0.08 0.06 0.048 0.04
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the difference of the ground-state energies between two- electrostatics. Since we assume Cd at 120 A is adequate-
and one-electron systems. ly represented by its classical value, at 60 and 30 A, Cg

Our model is a compromise between computational is only one-half and one-third as large as the classical
feasibility and the need tn include all physically relevant values, respectively. It is important to note that the usual
terms in the energy. We evaluate the energy in two corn- concept of a capacitance is meaningful in the classical
putationally convenient limits: for very small wells in limit.
which the kinetic energy dominates, so that polarization Our calculations on a suitably defined model system
energy may be treated as a perturbation; and for wells cover the ground-state energies of relatively small and
large enough so that the situation can be considered clas- relatively large quantum wells. We believe that ground-
sically. Our intuition led us to view the problem of two state energies of the intermediate quantum wells can be
electrons in a small well as a cross between the helium- obtained to a fair degree of accuracy by a smooth inter-
atom and particle-in-a-box problems. The helium-atom polation scheme. We also believe that we have set the
model supports the suitability of the perturbation theory correct voltage scale as high as I V for the problem we
to deal with electron interactions in the ground state. dealt with, which is much larger than the corresponding
The particle-in-a-box approach permits the use of the scale for GaAs.
infinite-barrier potential, thus allowing vanishing bound- Extension of our results to a larger number of electrons
ary conditions for the electron wave function at the and excited states faces severe calculational impediments.
dielectric boundary to be , !t up. The infinite-barrier approximation is less valid in the case

In the classical limit, in order to apply electrostatics, of a larger number of electrons than it is for the excited
we need to specify the positions of the two electrons; states of one- and two-electron systems. The at.,iZ :ion0
therefore, a minimization of the total electrostatic energy of a finite barrier immediately introduces a gamut of
is necessary. The two electrons are located at difficulties: electron wave functions extend a tail across
(r=b, 0=0) and (r=b, 0 =ir). Consequently, the the dielectric boundary, which prohibits the use of the
quantum-mechanical wave functions for the two elec- dielectric-constant discontinuity at the boundary, leading
trons cannot be represented by the zeroth-order spherical to a complicated electrostatic problem. The difficulties
Bessel function, even for small well sizes. This fact clear- are compounded by the need to mix in higher spherical
ly points out the limitation in the applicability of the Bessel functions and spherical harmonics to describe
present perturbation calculation. correctly the situation in the well. Everything points to a

It is important to note that all the electrostatic terms difficult problem that cannot be dealt with analytically
present have been fully taken into account. Our results but only numerically. Our work has elucidated the major
clearly indicate the importance of the self-polarization physics of the problem without sacrificing too much
and polarization interaction terms, which have compara- rigor, while maintaining computational simplicity and
ble magnitudes but apparently are somewhat larger than feasibility. As pointed out previously, the problem in-
the Coulomb interaction. Therefore, the use of a volving low-lying excited states should be tractable for
voltage-independent capacitance 3"10 to deal with the one- and two-electron systems, with use of the infinite
effects of charge accumulation does not offer a clear phys- barrier. Therefore, optical transitions between the
ical insight. The most physically correct definition of the ground state and the first excited state should not be too
capacitance should correspond to what may be measured. much more complicated, when treated within the frame-
Consequently, we define an effective capacitance Ceff in work of our model.
terms of an increment of the total stored energy in the
system. For the particular case of one- and two-electron ACKNOWLEDGMENTS
systems, Cefr may be defined by
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